亚洲中文日韩国产一区|亚洲国产精品原创巨作AV无遮挡|色依依国内精品中文字幕|日韩精品免费在线视频

<button id="lyzxa"><option id="lyzxa"><em id="lyzxa"></em></option></button>

    極限的證明

    時間:2022-11-23 19:59:10 證明大全 我要投稿

    極限的證明

    利用極限存在準(zhǔn)則證明:

    極限的證明

    (1)當(dāng)x趨近于正無窮時,(Inx/x^2)的極限為0;

    (2)證明數(shù)列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收斂,并求其極限。

    1)用夾逼準(zhǔn)則:

    x大于1時,lnx>0,x^2>0,故lnx/x^2>0

    且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2極限為0

    故(Inx/x^2)的極限為0

    2)用單調(diào)有界數(shù)列收斂:

    分三種情況,x0=√a時,顯然極限為√a

    x0>√a時,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2<0,單調(diào)遞減

    且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a為數(shù)列下界,則極限存在.

    設(shè)數(shù)列極限為A,Xn和X(n-1)極限都為A.

    對原始兩邊求極限得A=[A+(a/A)]/2.解得A=√a

    同理可求x0<√a時,極限亦為√a

    綜上,數(shù)列極限存在,且為√

    (一)時函數(shù)的極限:

    以 時 和 為例引入.

    介紹符號: 的意義, 的直觀意義.

    定義 ( 和 . )

    幾何意義介紹鄰域 其中 為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.

    例1驗證 例2驗證 例3驗證 證 ……

    (二)時函數(shù)的極限:

    由 考慮 時的極限引入.

    定義函數(shù)極限的“ ”定義.

    幾何意義.

    用定義驗證函數(shù)極限的基本思路.

    例4 驗證 例5 驗證 例6驗證 證 由 =

    為使 需有 為使 需有 于是, 倘限制 , 就有

    例7驗證 例8驗證 ( 類似有 (三)單側(cè)極限:

    1.定義:單側(cè)極限的定義及記法.

    幾何意義: 介紹半鄰域 然后介紹 等的幾何意義.

    例9驗證 證 考慮使 的 2.單側(cè)極限與雙側(cè)極限的關(guān)系:

    Th類似有: 例10證明: 極限 不存在.

    例11設(shè)函數(shù) 在點 的某鄰域內(nèi)單調(diào). 若 存在, 則有

    = §2 函數(shù)極限的性質(zhì)(3學(xué)時)

    教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。

    教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號性、不等式性質(zhì)以及有理運算性等。

    教學(xué)重點:函數(shù)極限的性質(zhì)及其計算。

    教學(xué)難點:函數(shù)極限性質(zhì)證明及其應(yīng)用。

    教學(xué)方法:講練結(jié)合。

    一、組織教學(xué):

    我們引進(jìn)了六種極限: , .以下以極限 為例討論性質(zhì). 均給出證明或簡證.

    二、講授新課:

    (一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.

    1.唯一性:

    2.局部有界性:

    3.局部保號性:

    4.單調(diào)性( 不等式性質(zhì) ):

    Th 4若 和 都存在, 且存在點 的空心鄰域,使 , 都有 證 設(shè) = ( 現(xiàn)證對 有 )

    註:若在Th 4的條件中, 改“ ”為“ ”, 未必就有 以 舉例說明.

    5.迫斂性:

    6.四則運算性質(zhì):( 只證“+”和“ ”)

    (二)利用極限性質(zhì)求極限: 已證明過以下幾個極限:

    (注意前四個極限中極限就是函數(shù)值 )

    這些極限可作為公式用. 在計算一些簡單極限時, 有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.

    利用極限性質(zhì),特別是運算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì), 把所求極限化為基本極限,代入基本極限的值, 即計算得所求極限.

    例1( 利用極限 和 )

    例2例3註:關(guān)于 的有理分式當(dāng) 時的極限.

    例4 [ 利用公式 ]

    例5例6例7

    【極限的證明】相關(guān)文章:

    數(shù)列極限的證明方法介紹02-25

    二重極限如何被證明08-03

    極限不存在該怎么證明08-03

    關(guān)于二重極限如何證明03-08

    數(shù)學(xué)中定義證明二重極限08-03

    高中生最新的中心極限定理證明08-03

    極限的作文07-19

    挑戰(zhàn)極限作文07-10

    突破極限作文08-13

    挑戰(zhàn)極限的作文08-06